Good bases for tame polynomials

نویسنده

  • Mathias Schulze
چکیده

An algorithm to compute a good basis of the Brieskorn lattice of a cohomologically tame polynomial is described. This algorithm is based on the results of C. Sabbah and generalizes the algorithm by A. Douai for convenient Newton non–degenerate polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Canonical Bases of Singularity Ringel-hall Algebras and Hall Polynomials

In this paper, the singularity Ringel-Hall algebras are defined. A new class of perverse sheaves are shown to have purity property. The canonical bases of singularity RingelHall algebras are constructed. As an application, the existence of Hall polynomials in the tame quiver algebras is proved.

متن کامل

Affine varieties with equivalent cylinders

A well-known cancellation problem asks when, for two algebraic varieties V1, V2 ⊆ C n, the isomorphism of the cylinders V1 ×C and V2 ×C implies the isomorphism of V1 and V2. In this paper, we address a related problem: when the equivalence (under an automorphism of C) of two cylinders V1×C and V2×C implies the equivalence of their bases V1 and V2 under an automorphism of C n? We concentrate her...

متن کامل

On Decomposition of Tame Polynomials and Rational Functions

In this paper we present algorithmic considerations and theoretical results about the relation between the orders of certain groups associated to the components of a polynomial and the order of the group that corresponds to the polynomial, proving it for arbitrary tame polynomials, and considering the case of rational functions.

متن کامل

Discriminant Method for the Homological Monodromy of Tame Polynomials

We construct an effective algorithmic method to compute the homological monodromy of a complex polynomial which is tame. As an application we show the existence of conjugated polynomials in a number field which are not topologically equivalent.

متن کامل

Constructing Two-Dimensional Multi-Wavelet for Solving Two-Dimensional Fredholm Integral Equations

In this paper, a two-dimensional multi-wavelet is constructed in terms of Chebyshev polynomials. The constructed multi-wavelet is an orthonormal basis for space. By discretizing two-dimensional Fredholm integral equation reduce to a algebraic system. The obtained system is solved by the Galerkin method in the subspace of by using two-dimensional multi-wavelet bases. Because the bases of subs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2005